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An approximate solution is obtained for the problem of flow of a viscous incompress ib le  liquid 
within a plane channel formed by uniformly spaced sinusoidally curved walls. 

The present  study will consider  the flow of a viscous incompress ib le  liquid in a plane channel with sinu- 
soidally curved walls. The distance between the walls is constant and the flow is assumed s teady-s ta te .  Such a 
flow is real ized in a g a s - l i q u i d  separa tor ,  and the resul ts  obtained can be used to calculate the p rocess  of 
droplet  seeding on the separa to r  walls. 

A number of studies exist [ 1-4],  dedicated to flow of viscous liquids in curved channels. The major i ty  of 
these deal with the ax i symmetr ic  case. In [4] the channel geomet ry  coincides with that considered here,  but 
the equations of motion were used in the Stokes approximation. The solution presented below is based on the 
complete N a v i e r - S t o k e s  equations. 

We will now formulate  the problem. The equation describing liquid flow has the form [5] 

OT OAT OT OAT 
,)AA,S, ~ = ~ ( x ,  Y). (1) 

OY OX OX OY 

The boundary conditions are  the condition of liquid adhesion to the walls, and the constancy of fluid flow 
Q at any channel section: 

Y = - - h + a c o s ( - ~ -  X ) ,  W=O, O~ : 0 ,  
OY (2) 

y = h + a c o s [ 2 S  X~,  W=Q, .O~ = 0 .  (3) 
OY 

The channel form, defined by three geometr ic  pa rame te r s ,  the half-width h, the amplitude a, and the 
wavelength X, is shown in Fig. 1. 

With the introduction of dimensionless var iables  x' = X/h, y '  = Y/h, ~b(x', y ' )  = ~ /v ,  Eqs. (1)-(3) take on 

o~ oA~ or oA~ =AA% 
Oy' Ox' Ox' Oy' (4) 

. . . .  cos - -  x' , ~ = 0 ,  = 0 ,  (5) y' 1 d h Oy' 

= cos - - x '  , ~ , O. (6) y" 1-4- h v Oy' 

the form: 

We now introduce the notation A = a / h ,  Q = Q/v, e = 2 lrh/x, and assume that e is a smal l  quantity. To 
solve Eqs. (4)-(6) we use the Blasius method [ 6], developed for the problem of liquid flow in a tube with slowly 
varying c ross  section. 

We pe r fo rm the substitution x = ex',  y = y ' ,  eliminating e f rom the boundary conditions and introducing 
it into the equation. Instead of Eqs. (4)-(6) we now have 

~3 ( % , ~  __ ~ . ~ y )  § ~ (*~Gy: , - -  r162 = ~ . . . .  + ~,~2G~uy + r  (7) 
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Fig. 1. Channel fo rm and longitudinal veloc-  
i ty prof i le  at two sect ions.  

y = - - l + z ( x ) ,  r  i~y=O, (S) 

.y=I- i -z(x) ,  r  ~y=O. (9) 

Here  and below par t ia l  der ivat ives  of the function r with r e spec t  to the var iables  x and y a re  denoted by 
corresponding subscr ip ts .  In addition we use the notation z (x) = A cos x. 

We will seek a solution of Eqs. (7)-(9) in the fo rm 

r = % +  ~ t +  e2~ + . . .  (10) 

Substituting Eq. (10) in sys tem (7)-(9) ,  we sequentially obtain zeroth,  f i rs t ,  second, etc. approximations.  

The zeroth approximation:  

~0yuyy=0, y = - - l + z ,  % = 0 ,  *0u=0,  y = l + z ,  

* o = Q ,  *0~=0 .  

The solution of the ze ro th  approximation is a Poiseui l le  flow: 

% = ~ , ~  ( - -n  3q-3 nq-2), (11) 

where V = y - z (x).  

The f i rs t  approximation: 

*tuuyu=O, t o t : - - l+ z ,  ~i=O,  ~ty=O, y = l + z ,  

* t  = O, *iu = O. 

The solution is ~O 1 = 0. 

The second approximation:  

%,~y~y = - -  3~z", 

The solution is 

y = - - l q - z ,  $2=0 ,  ~2y=O, y = l + z ,  
r  *~y=O. 

Qz" 
r 8 012--1)2" 

Here  the p r imes  denote der ivat ives  of the function z (x). 

The third approximation:  

" 3Q2 z'" ( r l ' - -  1) -}- 9 ~  r =-~-- T Z'Z"I] (]]2 - -  1) ,  

y = - - l + z ,  % = 0 ,  %u =0 ,  y = l + z ,  ~3=0 ,  

The solution is 

~zu = O. 

3 [ z'" z'z" ] 
% = " - ~  Q-~ [ 1680 (~lz - -  1)= ( r l '  -F 2rlZ - -  67) + ~ r I (~1 z - -  1) = (rl z -  5) . 

(12) 

(13) 

Substituting Eqs.  (11)-(13) in Eq. (10), we obtain the following express ion  for  the flow function: 

Q.z" 3 z"' z' z" ] 
.~___ (_~3_l_3~l+2)~sz__.g__ (~12 1 ) @ e 3 _ _ ~ [ ~  (qz_l)Z(~l~+2~lZ--67)-]- - - ~  ~lOl~_l)Z(~lz--5) . (14) 
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Mathematically,  Eq. (14) consists  of the f i r s t  three t e rms  of an asymptot ic  expansion of the desi red solu-  
m 

tion as e ~ 0 and a rb i t r a ry  Q = const  and A = const  (the p a r a m e t e r  A = a / h  appears  in z = A cos x) .  In o r -  
der  to use the solution in pract ice ,  it is neces sa ry  to se lect  t he ' pa rame te r s  e, Q, and A such that the f i rs t  t e rm 
dropped be much smal le r  than the preceding one. Then, as is evident f rom Eq. (14), Q and A cannot be too 
large.  Since the dimensionless  flow rate  Q = Q / v  = Urn" 2h/v is the Reynolds number  constructed with the 
mean velocity U m and channel width, it can be said that the solution obtained is l imited to Reynolds numbers  
which are  not too large.  

We will now use the solution obtained to determine the conditions for  development of breakoff  of the 
flow in the curved channel. To do this we use the f i r s t  two t e rms  of Eq. (14). Then the horizontal  (dimension- 
less)  flow velocity is defined by the express ion 

0 ,  3~ 
u - -  @-- -  4 

The condition for flow breakoff  on the wall is 

(1 --~) + 8 2 ~z" 
T n (1 - -  n~). (15) 

Ou _ Oi (16) 
Og 

Substituting Eq. (15) in Eq. (16) and considering,  for concre teness ,  the lower wall (i.e., ~ = -  1), we obtain 
2e2z ' '  = 3; But z "  = - A  cos x, and the breakoff  condition becomes 

- -  28ZA cosx = 3. (17) 

It follows f rom Eq. (17) that breakoff  on the lower wall can develop only at those points where cos x < 0, 
while the points mos t  dangerous in this sense are  x = ~ (2k + 1), k = 0, +1, ~2, . . . ,  i .e.,  the concavities of the 
channel profi le .* The condition for  breakoff  at such a point will be e2A = 3/2,  or  in dimensional form 

ah 3 
- -  ( 1 8 )  

A s imi lar  condition is t rue for breakoff  on the upper channel wall, where the peaks of the profile a re  the 
mos t  dangerous points. 

It is interest ing that breakoff  condition (18) contains only the geometr ic  charac te r i s t i c s  of the channel, 
and is independent of both flow rate and liquid viscosi ty.  

N O T A T I O N  

a, sinusoid amplitude; A, dimensionless  amplitude; h, channel half-width; k, integer;  Q, volume flow 
rate; Q, dimensionless  flow rate; U, longitudinal velocity;  Urn, mean longitudinal velocity; u, dimensionless  
longitudinal velocity; X, longitudinal coordinate; x ' ,  x, dimensionless  longitudinal coordinates;  Y, t r ansve r se  
coordinate; y ' ,  y, dimensionless  t r ansve r se  coordinates;  A, Laplacian; 8, expansion parameter ;  X, sinusoid 
wavelength; ~, dimensionless  coordinate; v, kinematic viscosity;  ~, flow function; ~, dimensionless  flow func- 
tion. 
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*We note that at these points the te rm corresponding to the third approximation is identically equal to zero.  
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