VISCOUS LIQUID FLOW IN A CHANNEL WITH
SINUSOIDAL WALLS
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An approximate solution is obtained for the problem of flow of a viscous incompressible liquid
within a plane channel formed by uniformly spaced sinusoidally curved walls,

The present study will consider the flow of a viscous incompressible liquid in a plane channel with sinu-
soidally curved walls, The distance between the walls is constant and the flow is assumed steady-state. Such a
flow is realized in a gas—liquid separator, and the results obtained can be used to calculate the process of
droplet seeding on the separator walls,

A number of studies exist [ 1-4], dedicated to flow of viscous liquids in curved channels. The majority of
these deal with the axisymmetric case. In[4] the channel geometry coincides with that considered here, but
the equations of motion were used in the Stokes approximation. The solution presented below is based on the
complete Navier—=Stokes equations.

We will now formulate the problem. The equation describing liquid flow has the form [5]
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The boundary conditions are the condition of liquid adhesion to the walls, and the constancy of fluid flow
Q at any channel section:
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The channel form, defined by three geometric parameters, the half-width h, the amplitude a, and the
wavelength A, is shown in Fig. 1,

with the infroduction of dimensionless variables x' = X/h, y' = Y/h, ¥(x', y') = ¥/v, Egs. (1)-(3) take on
the forms:
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We now introduce the notation A =a/h, @ = Q/v, & = 27h/A, and assume that & is a small quantity. To
solve Egs. (4)~(6) we use the Blasius method [6], developed for the problem of liquid flow in a tube with slowly
varying cross section.

We perform the substitution x = ¢x', y = y', eliminating & from the boundary conditions and introducing
it into the equation. Instead of Eqgs. (4)-(6) we now have
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Fig. 1. Channel form and longitudinal veloc-
ity profile at two sections.
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Here and below partial derivatives of the function ¢ with respect to the variables x and y are denoted by
corresponding subscripts. In addition we use the notation z(x) = A cos x,

We will seek a solution of Egs. (7)~(9) in the form
Y=Yy -} Py 4 P, + ... (10)
Substituting Eq. (10) in system (7)-(9), we sequentially obtain zeroth, first, second, etc, approximations.
The zeroth approximation:
Yoy =0, y=—142 1P=0, P,=0, yg=1+42
ho=Q oy =0.
The solution of the zeroth. approximation is a Poiseuille flow:
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where n =y — z(x).
The first approximations
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P =0, Yy = 0.
The solution is $; = 0,

The second approximation:
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Here the primes denote derivatives of the function z (x).

The third approximation:
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The solution is
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Substituting Egs. (11)~(13) in Eq. (10), we obtain the following expression for the flow function:
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Mathematically, Eq. (14) consists of the first three terms of an asymptotic expansion of the desired solu-
tion as & — 0 and arbitrary Q = const and A = const (the parameter A = a/h appears in z = A cos x). In or-
der to use the solution in practice, it is necessary to select the'parameters &, Q, and A such that the first term
dropped be much smaller than the preceding one. Then, as is evident from Eq. (14), @ and A camnot be too
large. Since the dimensionless flow rate Q = Q/v = Up, * 2h/v is the Reynolds number constructed with the
mean velocity Uy, and channel width, it can be said that the solution obtained is limited to Reynolds numbers
which are not too large.

We will now use the solution obtained to determine the conditions for development of breakoff of the
flow in the curved channel. To do this we use the first two terms of Eq, (14). Then the horizontal (dimension-
less) flow velocity is defined by the expression
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The condition for flow breakoff on the wall is
oy, (16)
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Substituting Eq. (15) in Eq. (16) and considering, for concreteness, the lower wall (i.e., n =—1), we obtain
2elz = 3; But z!'' =—A cos x, and the breakoff condition becomes
— 2524 cos x = 3. (17)

It follows from Eq. (17) that breakoff on the lower wall can develop only at those points where cos x < 0,
while the points most dangerous in this sense are x =7 (2k + 1), k=0, £1, £2,,.., i.e., the concavities of the
channel profile.* The condition for breakoff at such a point will be €*A = 3/2, or in dimensional form
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A similar condition is true for breakoff on the upper channel wall, where the peaks of the profile are the
most dangerous points,

(18)

It is interesting that breakoff condition (18) contains only the geometric characteristics of the channel,
and is independent of both flow rate and liquid viscosity.

NOTATIGN

a, sinusoid amplitude; A, dimensionless amplitude; h, channel half-width; k, integer; Q, volume flow
rate; _Q, dimensionless flow rate; U, longitudinal velocity; Up, mean lohgitudinal velocity; u, dimensionless
longitudinal velocity; X, longitudinal coordinate; x', x, dimensionless longitudinal coordinates; Y, transverse
coordinate; y', y, dimensionless transverse coordinates; A, Laplacian; g, expansion parameter; A, sinusoid

wavelength; 1, dimensionless coordinate; v, kinematic viscosity; ¥, flow function; ¥, dimensionless flow func-
tion,
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*We note that at these points the term corresponding to the third approximation is identically equal to zero.
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